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The mechanism of entrainment in free turbulent flows 
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A considerable quantity of observations and measurements exists concerning 
the phenomenon of intermittency which is connected closely with the entrainment 
process in free turbulent flows. A number of these are described in the first part 
of the paper and conclusions are drawn about the shape and motion of the bound- 
ing surface that separates turbulent and non-turbulent fluid. The salient features 
are that indentations of the surface grow and decay cyclically, that each cycle 
leads to substantial entrainment of ambient fluid into the turbulent region, that 
the indentations move a t  a considerable speed relative to the free stream, and 
that the surface has a comparatively simple form. The growth-decay cycle of 
the indentations suggests that a critical condition for growth exists, but the pres- 
sure field consequent on the convection velocity of the indentations makes for 
a Helmholtz type of instability that is unlikely to  be stabilized by purely viscous 
behaviour of the turbulent fluid. It is known that the initial response of turbulent 
fluid to distortion is elastic in character, with incremental Reynolds stress 
proportional to increment of total strain, and sufficient rigidity could stabilize 
the bounding surface. A simple flow model-an inviscid stream flowing over an 
elastic jelly-is examined and the condition for marginal stability is compared 
with the observed properties of the flow. The model leads to the conclusion that 
indentations of more than a critical wave-number are stable, and provides reasons 
for the comparatively simple form of the surface and for the occurrence of inden- 
tations in groups of about three. The relative values of entrainment constants in 
different flows of uniform density do not depend critically on the nature of the 
entrainment process provided that the main turbulent motion remains geo- 
metrically similar, but the correlation between entrainment constant and relative 
depth of the indentations found by Gartshore (1966) appears as a consequence 
of the ‘elastic’ control of the growth-decay cycle. Lastly, the properties of the 
engulfment mechanism are used to show that the entrainment constant for a 
jet is proportional to the square root of the ratio of ambient density to the 
average density inside the jet. In  contrast, the corresponding result for engulf- 
ment controlled by an eddy viscosity is variation as the ratio of the mean of the 
ambient and inside density to the inside density. Observations of high-speed 
jets of water in air and air in water give some support to the ‘elastic’ hypothesis. 

1. Introduction 
A curious and characteristic feature of free turbulent flows is that, at any 

moment, there exists a well-defined surface separating the fluid in turbulent 
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motion from the surrounding fluid in the free stream, which is in irrotational 
motion. On one side, the vorticity is everywhere very small, while vorticity in 
the turbulent fluid is irregularly distributed and generally large. The surface 
is deeply indented and its presence was invoked in the first place to explain the 
observed intermittency of the output from a hot-wire anemometer placed near 
the mean position of the surface. Although twenty years have passed since the 
first observations of intermittency by Corrsin (1943), understanding of the 
phenomenon and of the part the surface indentations play in the entrainment 
of ambient fluid is still very incomplete. The difficulties of formulating theoretical 
models that will provide an adequate account of the observations do not diminish 
the importance of the phenomenon and there are a considerable number of 
experimental studies which have made clear the form and motion of the bounding 
surface. My intention is to set out the implications of the observations and then 
to develop a theoretical model that is capable of accounting for the surface 
behaviour, in particular the flow instability that leads to the characteristic 
growth-decay cycle of the indentations. 

The observations under review are considered in four groups: (i) those using 
an ‘intermittency ’ signal which indicates whether an anemometer is in turbulent 
or in ambient fluid, (ii) those using tracers that are carried and diffused only by 
turbulent fluid, (iii) those concerned with the irrotational motion in the ambient 
fluid, and (iv) experimental studies of the effects on the flow of artificial distur- 
bances. Although many of the observations refer to other flows, their discussion 
will be in terms of two-dimensional wake flow behind a cylinder for reasons of 
verbal convenience. The notation follows the usual pattern: Ox is in the direction 
of the free stream and Ox along the axis of the cylinder, the components of the 
mean velocity are ( U ,  B, 0) and of the turbulent velocity fluctuation (u, v, w). 

2. Measurements with an intermittency signal 
Essentially, an ‘intermittency ’ signal always has one of two values depending 

on whether the sensing head is a t  that moment within turbulent or non-turbulent 
fluid. In  practice, the signal is emitted by a discriminator circuit which responds 
only if the magnitude of the output from an appropriate hot-wire assembly has 
exceeded a threshold value within a short time interval, the ‘memory’ time. 
The most suitable assembly is one responding to a component of the fluid vor- 
ticity as used by Corrsin & Kistler (1954), but, although vorticity is the real 
distinction between the two regions, simple gradients of the velocity fluctuation 
can be obtained from less complex wire assemblies and are equally suitable at 
high Reynolds numbers of flow. The magnitude of the threshold value needs 
only to be set above the natural fluctuation level in the ambient fluid, but the 
choice of the memory time raises problems. It must be long enough to bridge 
the time gaps while the anemometer signal passes through zero and its magnitude 
is less than the threshold value, but short enough to ensure that the intermit- 
tency signal becomes zero promptly when the anemometer passes into undis- 
turbed fluid. The difficulty of choosing a memory time reflects the difficulty of 
defining the exact position of the bounding surface and becomes progressively 
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less as the Reynolds number of the flow increases and the size of the smallest 
eddies decreases. The surface position cannot be defined more closely than the 
length scale of the smallest eddies contributing to the vorticity fluctuations, 
which is comparable with the Kolmogoroff length scale, 1, = u k - )  (Y is the kine- 
matic viscosity, E is the rate of dissipation of turbulent energy by viscous forces). 
It follows that the optimum memory time is of order lJQ, where U, is the con- 
vection velocity of the smallest eddies. For a particular flow, the memory time 
varies nearly as the -$-power of the Reynolds number. 

Supposing these practical problems to  be solved, we have at our disposal 
a signal proportional to a function 6(r, t )  which is one or zero as the point r 
is at  time t within turbulent or within undisturbed fluid. The simplest measure- 
ment is of its mean value, which gives the proportion of time that the sensor is 
within turbulent fluid, and which is known as the intermittency factor. The 
distribution of 8 has been studied for a variety of flows (plane wake Townsend 
1949, axisymmetric jets Corrsin & Kistler 1954 and Gartshore 1966, plane jet 
Bradbury 1965, boundary layers Corrsin & Kistler 1954, Klebanoff 1954), and 
it is broadly similar in all. Near the central plane of the flow (on the axis for axi- 
symmetric flows or near the wall for boundary layers), the intermittency factor 
is one and it begins to decrease sharply about half-way to the extreme limit of 
mean velocity variation (figure 1). At the extreme limit it  is still appreciable. 

If the surface displacement is always a single-valued function of position in the 
axial plane, i.e. if it  is simple and not folded over on itself, the variation of 8 
with distance from the central plane is a reproduction of the integrated proba- 
bility distribution function for the displacement. The distribution function so 
determined is nearly normal, which has led Corrsin & Kistler to conclude that the 
surface displacements arise from a process of generalized turbulent diffusion. 
A comparison of the distributions for various distances from the flow origin 
shows that, on the average, the surface advances into the undisturbed fluid at  a 
rate comparable with but rather less than the root-mean-square turbulent 
velocity. 

The intermittency signal may be analysed in much the same way as the turbu- 
lent velocity fluctuation, and Corrsin & Kistler (1954) have measured a variety of 
statistical parameters for the signal obtained from a boundary layer in zero 
pressure gradient. In the present context, the most interesting of their results 
are the distributions of the time intervals between changes in the signal. In  the 
outer part of a boundary layer, it is permissible to use the Taylor approximation 
that the flow pattern, including the bounding surface, is swept past the sensor 
at  the local mean velocity without undergoing appreciable change. Then a time 
interval T in the record is equivalent to a space interval of U,T in the direction 
of flow, where U, is the convection velocity or, very nearly here, the mean velocity. 
Their results for the mean values of I,, the interval in turbulent fluid, and of 
l,, the interval in irrotational fluid, are expressed conveniently in terms of qo, 
the distance from the wall at which 8 = 8. Bradbury (1965) has measured the 
mean frequency with which 6 changes from 0 to 1 in a plane jet, and, on the as- 
sumption that the effective convection velocity is the mean velocity in the 
jet, the corresponding values of il+i2 are included in table 1. It is evident 
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that the mean intervals are rather larger than the mean distance of the bounding 
surface from the ‘centre’ of the flow and considerably larger than the standard 
deviation of the surface displacement from its mean position, y = q0. Corrsin 
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FIGURE 1. Distributions of mean velocity and intermittency factor for a wake, 
a circular jet and a boundary layer. 

& Kistler (1954) have pointed out that + &)-l is the average number per unit 
length of intersections of the surface by a line through the sensor and parallel to 
Ox, and that, if the surface displacement 7 - T~ and its gradient ar/ax are statis- 
tically independent and normally distributed, 

The values of ( a q / a ~ ) ~  have been calculated on this assumption. 
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An interesting point about the observations is that the length scale 
___ -___ 

“7 - ro)2/(~r/w214 
which is analogous to the Taylor micro-scale, A, is about one-third of the half- 
width of the flow, although the Reynolds numbers are large. If # ( k )  is the power 
spectrum of q -rot k2#(k) is the power spectrum of @/ax and the length scale is 
the reciprocal of the ‘radius of gyration ’ of the spectrum about the vertical axis. 

- 

Flow s U l O  m o  + w ? 1 0  g/To [ aT /Wzl*  

i::} 0.17 0.38 

.,::I 0.22 0.69 
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Kistler) 0.25 1.05 2.0 3.0 
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0.75 - - 

0.25 - 2.3 
- - 

Plane jet 

- 

N.B. The deviation of the ratios zl/& from the correct value of s/( 1 - i) is due to sampling 
errors consequent on the use of comparatively short lengths of oscillograph record. 

TABLE 1 

In  figure 2, possible relations between two spectra are sketched and compared 
with the relations for the spectra of a turbulent velocity fluctuation and its 
space derivative. Consideration of the possibilities shows that, if the slope spec- 
trum is dominated by large wave-numbers, the surface displacement depends 
on very small wave-numbers much less than 2r]c1. It seems certain that the dis- 
placement spectrum is large for wave-numbers around 27c1, and that larger 
wave-numbers contributeneither to the displacement nor to the slope, if we regard 
folding on the scale of the Kolmogoroff length as being beyond the limit of resolu- 
tion. 

The statistical distributions of I, and I, are broadly similar in form after allow- 
ance is made for the different mean values when 8 is not equal to one-half. The 
significance of this is that for most of the time the surface is statisticallysymmetri- 
cal about its mean position. 

The intermittency signal may be combined with other signals to measure 
mean values of flow parameters within the turbulent fluid. For our purposes, 
the most interesting of these is the mean flow velocity within the turbulent fluid, 
obtainable from the ordinary mean velocity and the mean product, 6u. Measure- 
ments in a turbulent wake at a cylinder Reynolds number of 8200 show that 
the difference in mean velocity within and without the turbulent fluid is no more 
than 5 %  of the maximum velocity difference in the flow (Townsend 1956). 
It is not difficult to show that the difference cannot exceed the root-mean-square 
velocity fluctuation in the stream direction, about 25 yo of the maximum velocity 
difference, but the actual figure is substantially less. 

To summarize the conclusions from studies of the intermittency signal, 
(i) the bounding surface is well defined for large Reynolds numbers of flow, 

with a mean position about three-quarters of the way from the flow centre to the 
limit of mean velocity variation, 
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(ii) the scales of the surface indentations are comparable with the total 
width of the flow and there is little folding on the smaller scales which cover 
the range of eddy sizes in the turbulent flow, 

(iii) the depths of the indentations are normally distributed to a fair approxi- 
mation, and 

(iv) the average velocity difference between the turbulent and non-turbulent 
flow is small but not negligible, perhaps 5 yo of the maximum velocity difference. 

0 

FIGURE 2. Relative dispositions of the power spectra for a random variable and for its 
derivative: (a) with a narrow-band spectrum as proposed for 7-r0; ( b )  with a wide- 
range spectrum of the kind characteristic of turbulent velocity fluctuations. 

3. Visualization techniques 
The turbulent fluid may be made visible and distinguished from the ambient 

fluid by introducing scalar contaminants into it. One is heat, simply introduced 
by heating the wake-producing cylinder or the jet and easily observed by use 
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of schlieren or shadow-graph techniques. Alternatively, smoke may be intro- 
duced into air flows or coloured dye into liquid flows. All these contaminants 
remain in the turbulent fluid because the molecular diffusivity is invariably too 
small to allow appreciable spread into the irrotational flow. High-speed photo- 
graphs of axisymmetric flows show clearly the bounding surface, confirming its 
sharp definition. When heat is used as the contaminant, it can be seen that the 
gradients of refractive index, which determine the light and shade pattern in a 
schlieren photograph, are distributed nearly uniformly within the surface (e.g. 
plate B 28 of Turbulent flows and heat transfer, Lin 1959). 

The usefulness of vis~alization techniques lies in the possibility of studying 
development of flow structures, and cine photographs of a turbulent wake show 
that the indentations grow and decay in a cyclic pattern when observed moving 
with the ambient fluid. After a quiescent period, groups of indentations appear and 
grow to large amplitudes. They then engulf ambient fluid with rapid spreading of 
the turbulent region, lose energy and disappear. After another quiescent period, 
another group of indentations arise, not related to the preceding group, but with 
a larger scale appropriate to the increased width of the flow, and the cycle is 
repeated. A t  times, the pattern of the indentations during growth bears a strong 
resemblance to the K&rm&n streets of eddies which form behind a cylinder at 
Reynolds numbers in the range 45-200, but they arise locally and are not related 
in frequency to the eddies shed by the cylinder (Grant 1958; Keffer 1965). 

Visualization studies tend to confirm the conclusion from the analysis of inter- 
mittency signals that the indentations are produced for the most part by move- 
ments on scales comparable with the flow width. Figure 3 (plate 1) shows photo- 
graphs of dye released into the turbulent wake behind a circular cylinder through 
a small hole in the cylinder. The Reynolds number of the flow (about 1300) 
is too small for a well-defined bounding surface, but the contrast in complexity 
of the dye boundaries when viewed parallel to the cylinder and a t  right angles to 
it is clear. In  the first view, the dye remains within the bounding surface and its 
outline is determined by the form of the surface over a range of z comparable 
with the wake width. In  the second view, the dye outline depends on the spread 
in the Ox-direction and the ‘bounding surface ’ between coloured and transparent 
fluid is distorted by turbulent eddies that are indifferent to the surface. The fine 
details visible in the second view are a consequence of dye transport by all scales 
of the turbulent motion, while the simpler outlines of the first view indicate a 
simpler spectrum for motion at the bounding surface. 

4. Irrotational motion of the ambient fluid 
The surface separating turbulent, eddying fluid from ambient, irrotational 

fluid is not a material surface which moves with the fluid. It advances into the 
ambient fluid by a process of vorticity diffusion and subsequent amplification 
of the diffused vorticity by straining, but the process of small-scale ‘nibbling’ 
must be nearly uniform over the surface. If we seek to relate the irrotational 
motion of the ambient fluid to the movements of the surface, we should consider 
the potential flow caused by motion of a boundary across which there is a steady 
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suction. On the average, i.e. over the whole growth-decay cycle, the surface 
slopes are fairly small (table l ) ,  and the irrotational motion is nearly that pro- 
duced by the motion of an impermeable surface coinciding with the bounding 
surface added to a uniform velocity which is the difference of the mean rate of 
advance of the surface and the suction velocity. On this basis, Phillips (1955) 
showed how the irrotational fluctuations outside the turbulent flow are related to 
the normal velocities produced by the movement of the surface relative to the 
freestream. If the spectrum function of the normal velocities is of the most general 
form compatible with the condition of incompressibility, the mean square of the 
fluctuation velocity falls off as ( y - ~ ~ ) - ~  for large values of y / ~ ~ .  Bradbury 
(1965) has shown that the ‘turbulent ’ intensities in the ambient fluid do vary 
in this way with a value of T~ close to the mean position of the surface. 

If the irrotational fluctuations are caused by movements of the bounding sur- 
face, their spectrum depends on the instantaneous spectrum of the surface move- 
ments, and, if the surface movements have a well-defined convection velocity, 
the fluctuations will have the same convection Velocity.? Since unambiguous 
measurements of the irrotational motion must be made a t  some distance from 
the surface, the convection velocity is that of the larger-scale indentations. 
Reports of observations related to the convection velocity are few and scattered. 
Near the mixing zone of a turbulent axisymmetric jet, Davies (1964) found the 
convection velocity to be nearly one-half of the core velocity, both in the potential 
core and outside the mixing zone. Bradshaw, Ferriss & Johnson (1964) have 
measured the frequency spectrum of the fluctuations and find that it has the 
same shape as the spectrum in the region of maximum shear, but with a scale 
factor indicating a convection velocity of O.65Um, where U, is the excess of 
maximum velocity over the ambient velocity. By comparing the longitudinal 
correlation function with the frequency spectrum at a point, Franklin & Foxwell 
(1958~) find a convection velocity for the near-field pressure fluctuations of 
about +Urn. Wills (1964) finds that the convection velocity of the v fluctuations 
exceeds that of the u fluctuations near the edge of the flow, which, in view of the 
dominance of v fluctuations in the irrotational flow, points to a convection velo- 
city substantially different from the velocity of the free stream. On the whole, 
it  seems certain that the convection velocity of the irrotational fluctuations 
is intermediate between the central velocity and the stream velocity. 

Even for a jet of nearly sonic velocity, the pressure fluctuations within one 
or two exit diameters are nearly those of the irrotational flow and, with a definite 
convection velocity considerably larger than the irrotational velocity fluctm- 
tion u,, the pressure fluctuation is given by 

Franklin & Foxwell (1958b) give measurements of the intensities of the pressure 
fluctuations near the mixing zone of a circular jet. One jet diameter from the outer 

f Convection velocity is a term used to describe the quotient of spatial by time dis- 
placement for maximum space-time correlation. For an unchanging pattern it is the speed 
with which the pattern moves. It may be quite different from the fluid velocity. 
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edge of the mixing layer, their intensity contours show that 
- 

(@)J = 1-8 x 10-3pu;, 

and an extrapolation of their results to the presumed mean position of the bound- 
ing layer (using their lateral traverse) indicates that there 

- 
(p2)* = 1-5 x 10-2pUk. 

This value may be compared with 

@)+ = pU,(i@, 

obtained from (4.1), to give 

(?)&/Urn = 0.03, 

(4.2) 

on the presumption that U,/Um = 4. Bradshaw et al. (1964) have measured the 
turbulent intensities in a similar jet and find that (v,z)J/Um = 0.08 in this region. 
A considerable part of the measured intensity belongs to the rotational flow, 
and, in potential flow, _ _  - 

ur"+w; = v;, (4.3) 

so that the observed pressure fluctuations are broadly consistent with the observed 
turbulent intensities and a convection velocity of magnitude comparable with + u,, . 

5. Response to an external disturbance 
The observations so far described were made in undisturbed flows and may 

not form the best guide to the mechanics of the flow. Better understanding may 
be found by study of disturbed flows in which certain elements of the mechan- 
ism are magnified or suppressed. Clauser (1956) has suggested that a turbulent 
boundary layer may be regarded as a ' black box ' containing a control mechanism 
which regulates the intensity of the turbulence and the spread of the flow, 
and, like other control systems, useful information about the nature of the mechan- 
ism can be obtained by observing the response to external disturbances of suit- 
able form. The difficulty of the method is to find a disturbance that produces a 
substantial effect on the flow, the only success to date being the effect on a turbu- 
lent wake of a suddenly imposed plane straining in the transverse direction, 
i.e. 8 V/ay = - a W/ax < 0. These measurements, by Reynolds (1962) and by Keffer 
(1965), are concerned with continuous straining and lead to fundamental changes 
in the flow, but the nature of the changes shows clearly the nature of the flow 
patterns that cause the surface indentations. 

Both from correlation measurements and from observations of a dye-con- 
taining wake, Grant (1958) has concluded that the 'large eddies' that cause the 
indentations? resemble short trains of eddies arranged as in a KQrmQn street, 
differing from the prototype behind a circular cylinder by occurrence in groups 
of perhaps three eddies on each side, by impermanence and by restricted extent 

t Grant reported also large 'inclined' eddies, but their circulation is in the (zOz)-plane 
and they cannot cause indentations. 
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in the direction parallel with the cylinder. Circulation in the eddy systems is 
nearly confined to the plane Oxy a t  right angles to the cylinder axis Ox, and 
imposition of a plane straining with extension along the Ox-axis is expected 
to increase the energy of the system and the velocities of circulation. Reynolds 
and Keffer find that the first effect is a greatly increased rate of spread of the wake, 
clearly caused by increased intensity of the motions responsible for the dis- 
tortion of the bounding surface. Visualization studies show that the periodic 
indentations become far more striking and they do not disappear with further 
development but remain permanent features of the flow (Keffer 1965). It is clear 
that systems of eddies closely resembling those postulated by Grant exist in a 
normal wake and are the major agents for the distortion of the bounding surface 
and the spread of the turbulent fluid. 

6. Mechanism of the large eddies-equilibrium hypothesis 
Lateral spreading of a turbulent flow involves conversion of irrotational 

ambient fluid to turbulent fluid, a process that depends in detail on small-scale 
diffusion of vorticity across the bounding surface. However, the folding of the 
surface by the large eddies can increase greatly the rate of conversion, which is 
controlled by the intensity of the large eddies. The large eddies might arise 
from the general turbulent motion, but their degree of organization suggests 
that they derive energy from the organized mean flow, and that the remaining 
turbulent motion of smaller scales merely resists their growth by absorbing 
some of their energy. Then a sufficiently high intensity of the turbulent motion 
may prevent further growth of the large eddies or even destroy existing ones. 
Further, lateral spreading of a free turbulent flow is accompanied necessarily 
by transfer of energy from the mean flow to the turbulent motion, and the greater 
the rate of spread the greater the rate of energy transfer. So, if an unusually 
vigorous set of large eddies appeared in the flow, they would cause a large 
increase in the rate of production of turbulent energy which, in time, might 
lead to turbulent intensities sufficient to destroy them. The equilibrium hypo- 
thesis assumes that the large eddies are the principal agents of the entrainment 
process and that their average intensity is set by the operation of a control 
cycle whose elements are : growth of large eddies -+ rapid entrainment -+ in- 
crease of turbulent intensity + additional damping of the large eddies + de- 
crease in intensity of large eddies. 

A feedback control system of this kind may or may not be stable; that is, the 
level of the controlled quantity may remain nearly steady, or it may oscillate 
with considerable amplitude around the value for unstable equilibrium. Only 
for the rather special flow in a distorted wake does the intensity of the large 
eddies remain steady and the more usual behaviour is the oscillation of the 
growth-decay cycle described by Grant. The observed instability derives from 
two characteristics of the system. First, the spreading of the flow means that any 
group of large eddies becomes progressively smaller compared with the flow 
width and so less able to extract energy from the mean flow. Secondly, the delay 
in response of the elements of the control cycle allows overshooting of the 
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equilibrium intensity and is favourable to oscillation. Observations of the 
growth-decay cycle are consistent with the following scheme: 

(i) During a period of quiescence, the turbulent intensity is too large to permit 
growth of large eddies, but, in their absence, entrainment is weak and the inten- 
sity decreases until the flow is unstable to development of large eddies of suitable 
scale. 

(ii) Once the flow is unstable, suitable components of the existing turbulence 
grow and develop into a large eddy system which causes rapid entrainment. 

(iii) The rapid entrainment leads t o  an increase of turbulent intensity, making 
the flow once more stable to growth of large eddies, and the existing eddies lose 
energy to the main turbulent motion, and another period of quiescence begins. 

(iv) The cycle recurs but the flow width is considerably larger and the next 
set of large eddies are also larger. If the equilibrium hypothesis is accepted, the 
average level of the turbulence is near the value for neutral stability of the flow 
to eddy disturbances that can develop into a system of big eddies. 

The first attempt to apply the hypothesis to predict the rate of spread of a 
turbulent flow assumed that the action of the main turbulent motion on the 
large eddies can be represented by a coefficient of eddy viscosity equal to the 
value describing the rate of spread of the mean flow (Townsend 1951). The 
stability problem was further simplified by ignoring the existence of the bounding 
surface and assuming the eddy viscosity to act everywhere and not just inside 
the boundary. In  this form, the model leads to a surprisingly accurate value for 
the effective eddy viscosity in a plane wake (Townsend 1951, 1956) and explains 
satisfactorily the different values of the flow constants (‘Reynolds numbers ’ 
formed from flow width, variation of mean velocity and eddy viscosity) in 
jets, wall jets and wakes (Gartshore 1966). As a description of the mechanics 
of generation of the large eddies, the model is much less satisfying. The basic 
difficulty is that the pressure field on the bounding surface caused by its 
motion relative to the inviscid ambient fluid cannot be balanced by viscous- 
type stresses proportional to rates of strain and all disturbances are unstable. 
For example, in a flow with a constant velocity P of the turbulent fluid relative 
to the free stream, disturbances of wave-number k grow as exp (+kVt) if V / ( k v )  
is large, and as exp ($Vzt/v) if V / ( k v )  is small (see appendix). Observations of 
dyed wakes suggest strongly that the growth of large eddies sets in suddenly and 
so that a critical condition for growth exists. The presence of a gradient of mean 
velocity in the turbulent fluid is not likely to change the pattern of essentially 
Kelvin-Helmholtz instability. 

An explanation of the sudden appearance of large eddies after a quiescent 
period was given by Grant (1958) in terms of stress-releasing behaviour, in which 
Reynolds stresses stored in the fluid are re-aligned by the large eddies so that they 
can release their energy. An essential feature is a non-Newtonian behaviour of 
the turbulent fluid with persistence of stresses after an element of fluid passes 
into a different environment. That the Reynolds stresses produced by distortion 
of turbulent fluid have a qualitative resemblance to those in a visco-elastic 
liquid is confirmed both by measurements of grid turbulence in a distorting 
duct (Townsend 1954), and by the theory of the behaviour of isotropic turbulence 
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undergoing very rapid distortion (figure 4). The initial response of the turbulent 
fluid is to develop additional Reynolds stresses nearly proportional to the 
total strain, and a uniform rate of strain produces stresses which increase until 
the total strain ratio is of order three. It seems likely that the response of the 
turbulent fluid to the initial growth of the indentations is closer to that of an 
elastic solid than that of a viscous fluid and that the pressure field on the surface 
is balanced by ‘elastic ’ stresses for neutrally stable disturbances. 

1 2 4 8 
Strain ratio (log scale) 

FIGURE 4. Stress-strain diagrams for turbulent fluid 
(based on results from Townsend 1954). 

The ‘elastic solid’ is unusual in that it contains a basic distribution of mean 
velocity acted on by Reynolds stresses which are nearly homogeneous in the 
flow direction, and only the incremental stresses caused by the developing 
indentations are related to the incremental strains by an elastic equation. The 
elastic behaviour depends on the nature of the main turbulent motion, which is 
strongly anisotropic. In spite of this, let us assume that the stress-strain relation- 
ship is that of an incompressible solid of rigidity n ;  i.e. the incremental stresses 
are 

where ti is the incremental displacement of a fluid particle, and p is the hydro- 
static pressure. With this assumption, it would be possible to investigate the 
stability of a flow consisting of turbulent ‘elastic’ fluid initially between the 
planes y = & h, with a specified basic distribution of mean velocity and bounded 
by inviscid fluid at rest. The calculations would be tedious and i t  seems clear 
that the basic features of the instability are similar to those of the Kelvin- 
Helmholtz vortex sheet so that it can be examined with a much simpler 
model. We suppose that all of the turbulent fluid involved in the disturbance 
is moving with the same velocity V relative to the free stream, and then i t  is not 
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difficult to show that (see appendix) antisymmetric disturbances of wave- 
number k in the direction of flow propagate with phase velocity c given by 

cz(c - V ) z  = n2[4( 1 - c2/n)4 tanh (kh( 1 - c2/n)*) - ( 2  - cz/n)z tanh kh]. (6.2) 

For large kh and V less than 1-79n3, there are two real roots and the system is 
stable to small disturbances, but, with slightly larger values of V ,  waves with 
phase velocities relative to the jelly of approximately 0.63nQ grow exponentially 
in amplitude.For small values of kh, waves grow exponentially with phase velocity 
equal to V and with amplitude varying as exp (kh)*kVt.  

To use these results, the effective rigidity of the turbulent fluid is needed. 
In the initial stages of distortion of isotropic turbulence, the rapid distortion 
theory (see equation (4.3.3), Townsend 1956) leads to 

(6.3 1 
__ 

n = 2 . ~ 2  
5 ,  

but it is probable that additional distortion of the fully strained turbulence is 
opposed by a larger rigidity, possibly as large as 34“. For a wake, which satisfies the 
condition of parallel flowbetter than jets, (2)Q = 0.3Um, where U,is the maximum 
velocity defect, and so the convection velocity relative to the irrotational fluid 
of the neutrally stable disturbances of large kh would be 0.22Um or 0.35Um, 
depending on which estimate of the rigidity is adopted. Both values are less than 
the observed convection velocity of about 0*5Um, a discrepancy that may arise 
from the crudeness of the model, but which is more likely to be caused by use of 
the mean value of the turbulent intensity rather than the value when the flow 
is neutrally stable. In  the growth-decay cycle, neutral stability occurs during the 
quiescent phase when the turbulent intensity is larger than the average over the 
cycle. Allowing for this difference, the observations are consistent with the sug- 
gestion that the large eddies arise from an instability controlled by elastic be- 
haviour of the turbulent fluid. 

7. The shape of the bounding surface 
Consideration of the simplified flow model has shown that the turbulent 

intensity in a wake has nearly the magnitude necessary to stabilize the flow 
against development of moderately large eddies during the quiescent period of the 
growth-decay cycle. Two assumptions are made: (i) the eddies are so large that 
the main turbulent motion is smaller in scale and the rigidity is proportional 
to their turbulent intensity, and (ii) the real distribution of velocity in the turbu- 
lent fluid can be replaced by a step distribution with constant velocity equal to 
some effective velocity. If we consider the stability of the surface to smaller- 
scale displacements, both assumptions need modification. First, turbulent 
eddies of size larger than the scale of the disturbance respond to an average of 
the deformation over their extent and can contribute little to the elastic stresses 
that resist the deformation. Approximately, the effective rigidity for a distur- 
bance of wave-number k depends on the turbulent intensity of eddy components 
of larger wave-numbers, say 

r m  
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where a and b are constants of order unity, and E(k)  is the power spectrum of 
turbulent intensity. Secondly, the disturbance produced by a corrugation of 
wave-number k is confined within a depth of order k-l, and, if the step distribu- 
tion of velocity is to be used, the effective velocity V must be an average of the 
mean velocity in the disturbed layer and approximated by 

V ( k )  = U(v0-c1k-1),  (7.2) 

h 
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FIGURE 5. Stability diagram displaying relative values of effective velocity and rigidity 
over the range of wave-numbers, calculated from (7.2) and (7.1). 

the mean velocity a t  a depth c , k 1  within the turbulent fluid (where c1 is another 
constant of order unity). Using results quoted above, indentations of wave- 
number k are unstable if V ( k )  is greater than 1*79[n(k)]Q. If the wave-number 
lies within the inertial subrange of the spectrum, we have, from the Kolmogoroff 
theory of local similarity, E(k)  = Cdk-%, 

and the condition for instability is then that 

V ( k )  > (+C)t (&)a k-4. (7 .3)  

Taking into account the fact that indentations of wave-numbers around yo1 
are roughly in a condition of neutral stability, the stability condition (7.3) 
can be expressed in graphical form (figure 5 ) .  Notice that the intermediate range 
of eddy sizes is stable and that only the large eddies and, possibly, the smallest 
eddies can be unstable. The stability of the intermediate range of surface deforma- 
tions explains the comparatively simple form of the surface and its sharpness. 

The characteristic appearance of large eddies in groups of about three on 
each side of the flow is a natural consequence of the stability of small-scale 
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indentations and the variation of growth rate with wave-number. The origin 
of a group is a chance distortion of the bounding surface by essentially unorgan- 
ized eddies of the turbulent motion and, if the group is to grow to large amplitude 
in the limited time available for growth, the form of the distortion must be 
characteristic of the energy-containing eddies of the turbulent motion. A possible 
disturbance is 

7 - qo cc (x cos q5 + z sin q5) exp { - +@(xz + z2)},  (7.4) 

where k, is a wave-number characteristic of the turbulent motion and q5 is the 
inclination to the Ox-axis of the 'wave-normal' of the single-wave group de- 
scribed by (7.4). If k,h is small, both bounding surfaces are likely to be distorted 
antisymmetrically by a single chance grouping of the turbulent eddies, but 
distortions of the two surfaces should be independent if k, h is large. I n  terms of 
Fourier components, 

where I, n are wave-number components, k2 = 12+n2, and 8 = tan-ln/l is the 
inclination of the wave-number vector to the direction of flow. The original 
distortion is likely to contain comparable amounts of symmetric and antisym- 
metric components, and the two groups of components grow at different rates. 
The stability condition for symmetric disturbances is obtained from equation 
(6.2) if hyperbolic cotangents are substituted for the hyperbolic tangents, and it 
is clear that large wave-numbers are stable and that the growth rates of sym- 
metric and antisymmetric disturbances become equal for large values of kh. I n  
any event, the process of amplification increases the antisymmetry of the inden- 
tation although the effect is small for large wave-numbers. 

To the linear approximation, each antisymmetric Fourier component grows 
exponentially with a logarithmic rate of (kh)* kV cos 8 for small values of kh. 
For larger values of kh, growth occurs if V ( k )  cos8 exceeds 1*79[n(k)]* and, 
over the whole range of kh, the logarithmic growth-rate may be approximated 
by the function 

where ko is the upper limit to the range of unstable wave-numbers. The growth 
rates for symmetric components are less, particularly for smaller wave-numbers. 
The interesting point is that the growth rate has a maximum value a t  k = gk, 
and so, after considerable amplification, Fourier components with wave-numbers 
near +ko dominate the disturbance. Near the maximum, the growth rate (7.6) 
may be approximated by 

(kh)g k( 1 - k/ko)  V cos 0, ( 7 . 6 )  

(kh)* k( 1 - k/ko)  Vt = CL - +Li(k - Qko)2, (7.7) 

where a = ($)&&kih4Vt, and Lg = Neglecting differences of phase 
velocities between the components and replacing the Fourier amplitudes of 
the disturbance (7.4)) k cos (8  - q5) exp ( - +k2/kf),  by the value at maximum am- 
plification, k = f k o ,  n = 0, the shape of the amplified indentation is given by 

q - qo cc ea cos 4 exp [ - &(x2/Lg + 35k2x2a-1)] sin ($kox). (7.8) 
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The result of the amplification is to produce a distortion of the bounding surface 
with the form of a wave group having crests in the Ox-direction and appreciable 
amplitude over a distance of about 5L0 in the Ox-direction and about +%&,l 
in the Ox-direction. Since the wave-number of the group is @,, the number 
of crests visible is about (3/2n) koLo = n-1(175a/18)3. Figure 6 shows the form of 
a group for cc = 2-5, corresponding to a maximum growth ratio of 12. .. 

0 .  

0 .  . . . *.* . . . . 
. . 

e m  
5 00 

FIGURE 6. Shape of amplified wave group, calculated from (7.8) with a = 2.5. 

The description may be compared with the large eddies in turbulent wakes 
photographed by Grant (1958) and by Keffer (1965). In  a cylinder wake, 

h = qo = O-.l(xd)& (Townsend 1956), 

the time available for growth is of order 

i.e. 2x/U1 (U, is the stream velocity, d is the cylinder diameter), d the verage 
wave-number of the large-eddy systems is about 2h-lt so that koh = 3.3. Putting 
the convection velocity equal to the mean of the free-stream and axial velo- 
cities, B = 0.5U1(d/x)*. Substituting these values in (7.7), a! = 2.5 and the 
number of crests in a group is 2.3. The amplification ratio, about 12:1, is 
plausible and the number of crests close t o  that observed. 

Antisymmetry of the indentations can arise from the process of amplification 
only if the most unstable wave-number is less than h-l or by antisymmetry of 
the initial disturbance. The numerical values for the turbulent wake show that 
any antisymmetry must derive from the initial disturbance, and this is unlikely 
in view of the small scale of the turbulent motion. One would expect to find 
groups of about three crests on both sides of the wake without appreciable cor- 
relation between groups on opposite sides. Keffer concludes from a study of 
his photographs that there is no correlation but Grant came to the opposite 

t Photographs by Keffer, taken just inside the distorting channel, show wave-numbers 
of about 3h-l, but these large eddies have been amplified and are characteristic of the 
wake before it entered the distortion and underwent an abnormally rapid expansion. 
In  a normal wake, the relative wave-number must be rather less. Photographs by Grant 
are less clear but indicate an average wave-number near 2h-I. 
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(6 )  
FIGURE 3. Photographs of the wake of a towed cylinder, made visible by the discharge of 
dye through it small hole a t  the rear of the cylinder; (a)  seen along a line parallel with the 
cylinder axis; ( b )  seen along a line normal to the plane of the wake. (The width of the chan- 
nel is about 12 em, the cylinder diameter 3 mm, and the Reynolds number about 1200.) 

TOWNSEND (Facing p. 704) 
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fb) 
FIGURE 8. For legend see facing page. 

Plate 3 
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(4 
FIGURE 8. Photographs of inhomogencous jets with various rat'ios of density of discharged 
fluid t o  density of ambient fluid: ( a )  air into watcr, ratio = 0.0015; ( b )  hydrogcn into air, 
ratio = 0.07; ( c )  carbon dioxido int>o air, ratio = 1.5; (d) watcr into air, mt'io = 650. 
(On (d ) ,  tlic t,wo marked lirirs are 1 0  cm a.part, and t.hc jet. orificc wa.s ahout, 40 em t,o t,he 
left of the first marker.) 

TOWNSEND 
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conclusion. In  jets, the characteristic values of kh are even larger and it seems 
certain that the groups of large eddies arise independently on the two sides of 
the flow. 

8. Variations of entrainment constant 
In  a self-preserving flow, the bounding surface advances into the ambient 

fluid at an average velocity that is a constant proportion of the local velocity 
scale of the flow, but one that is different in different kinds of flow. The ratio 

Wake 

0.40 
0.38 
0.21 
0.24 
0.061 
0.5 
2-1 

2 

0 

0 

Jet 

0.18 
0.22 
0.13 
0-15 
0.025 
0.55 
2.0 

3.1 

0.09 
- 0.10 

Boundary layer 

0.048 
0.17 
0.08 
0.08 
0.0105 
0.7 
2.15 

2.6 

- 0.01 
+ 0.01 

TABLE 2. Lu is the integral scale of the turbulence, 1; is the variance of the velocity dis- 
tribution. Sources of the material are: for the wake, Grant (1958) and Townsend (1956); 
for the plane jet, Bradbury (1965) ; for the boundary layer Corrsin & Kistler (1954) 

of entrainment velocity to scaIe velocity is closely related to the entrainment 
constant defined by 

where U, is the difference between the velocity at the centre of the flow and 
U, the velocity of the ambient fluid. A basic problem for any theory of free turbu- 
lence is predicting the entrainment constant for a given kind of flow. As a guide, 
it  is useful to consider the information contained in table 2,  which compares in 
non-dimensional form a number of flow parameters for three kinds of two- 
dimensional flow, wakes, jets and boundary layers without longitudinal pressure 
gradient. 

Gartshore (1966) has shown a close correlation between the entrainment con- 
stant and g / T o  the relative depth of the indentations, using observations for a 
wide variety of free turbulent flows, and the tabulated values illustrate this. 
It may be noticed that the variations of turbulent intensity and entrainment 
constant are correlated, roughly with Pcc ?/U:. A first attempt to explain the 
difference between the entrainment constants in jets and in wakes supposed that 
lateral compression of the large eddies in a jet would reduce their size with a 
consequent reduction in entrainment efficiency (Townsend 1956). The explana- 
tion fails to account for the even smaller entrainment constant in a boundary 

45 Fluid Mech. 26 
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layer where the lateral compression is negative. Although the flow in a boundary 
layer differs in important respects from that in jets and wakes, the discrepancy 
is too great to allow the hypothesis that lateral compression is the cause of the 
variation. On the other hand, lateral extent of the large eddies is clearly of great 
importance for determining the rate of entrainment. Here it will be argued that 
the variations of entrainment constant are primary, in the sense that they are 
dependent on differences of flow geometry, and that the form of the large eddies 
is adjusted to produce the required entrainment rate. 

First, the environment of the turbulent flow is very similar in wakes and jets, 
and, to a less extent, in boundary layers. In  each flow, the turbulence is confined 
within bounding surfaces which are not very irregular and is acted on by a dis- 
tribution of mean velocity which is nearly of the form 

U = U, + Urn exp ( - $y2/1:) (8.2) 

for both wakes and jets. Table 2 shows that the scale of the velocity distribution 
1, is nearly a universal fraction of 7,. For fully developed flow, it is plausible 
that the turbulent motion should be geometrically similar and characterized 
by a length scale which is a universal fraction of 7, and a velocity scale that de- 
pends on the flow. The observed values of the integral scale offer some confirma- 
tion of the hypothesis. It follows that the total rate of energy dissipation across 
a half-section of the flow has an average value of 

€70 = (!P)bIo/L, (8.3) 

where (p"), is the turbulent intensity at the centre and L is a suitably chosen 
scale of the turbulent motion. 

Another expression for the energy dissipation is the energy equation 

to the usual 'boundary-layer' approximation, where 7, is the shear stress at 
y = 0, and @Z + &fv], is the flux of turbulent energy at y = 0. For wakes and jets, 
the f i s t  two terms are zero and, assuming that = (a"), for y < 7, and is zero 
for y > qo, the integrals can be found for the velocity distribution (8.2). After 
making use of the conditions for conservation of momentum, U,q, = const. 
for a wake (/Urn/ < U,) and Uk7 ,  = const. for a jet (U, = 0 ) ,  we find 

- 

for a wake, and 

(8.5W) 

(8.5 J) 

for a jet. The similarity of boundary layers to wakes and jets extends only to the 
outer part of the flow beyond the equilibrium, constant-stress layer. Using as the 
velocity distribution in the outer layer 

(8.6B) 
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which with a = 1.75 gives a good description (Townsend 1956), and neglecting 
the turbulent flux of energy near y = O,? 

qo = (27rta)-l Uzp[l- +ria?/ ~ $ 1 .  (8.5B) 

It is assumed that the Reynolds number is very large and use has been made of 
the momentum equation 

Geometrical similarity of the turbulence has been assumed and so the ratio of 
the maximum Reynolds stress to the turbulent intensity is independent of the 
flow. For a wake, use of the Reynolds equation for the mean flow 

au au a i z  U-+V-- = -- 
ax ay aY ' 

with the velocity distribution (8.2) leads to 
- 

( - uv), = 4 e-4 lo/y0 Ukp ,  (8.7 W-J) 

which is nearly true for a jet. For a boundary layer 
- 

(-uo), = (2n)-ta-W33. (8.7B) 

Combining (8.3), (8.5) and (8.7) for each flow, we have 

for a boundary layer. 
The expressions for the entrainment constant involve three universal con- 

stants, L/y0 and vo/Z0 (or a for a boundary layer), whose values can be 
chosen within limits. After a large plane strain, homogeneous turbulence de- 
velops a value of ?/ ]UV/  near 6 (Townsend 1956), but smaller values are common 
in free turbulent flows (table 1). In  grid turbulence (Batchelor 1953), the scale L 
is approximately three times the integral scale of the turbulence, which is of order 
i70 (table 1). The mean position of the bounding surface must be just within the 
range of mean velocity variation, a condition that implies a value of qo/Z0 near 2 .  
To fit the wake observations, we use the observed values 

?/lGlm = 3.5, Tollo = 2.0, p = 0.40 

to show that L/qo = 1.49. Substituting in (8.85) and (8.8B), entrainment 
constants for jets and boundary layers are found, in fair agreement with 

t It is at most of order (?)# and les~ than (say) 70 U,,, in 8 ratio ~ ) ~ / U m .  
46-2 
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observation for the jet (see table 3). (For a boundary layer, a = 1.75 is equiva- 
lent to a value of qo/Z0 of 2.) 

It appears that the variation of entrainment constant between wakes and 
jets can be explained on the assumption of geometrical similarity of the turbulent 
motion within the bounding surfaces without any detailed consideration of the 
process of entrainment. The stability considerations of the previous section 
indicate that the indentations are in the form of wave groups with wave-number 
rather less than k,, the wave-number for critical stability, which satisfies the 
condition (see (7.3)) 

EkC1 = A3V3(k0), (8.9) 

where V(k , )  is the effective relative velocity. Combining the stability condition 
with (8.7), 

for wakes and jets, and 

Wake Jet Boundary layer 

Quantity Observed Theory Observed Theory Observed Theory 

0.40 0.40* 0.18 0.16 0.048 0.09 
2 2* 3.1 3.4 2.6 2.5 (3.6) 

P 
h 0  

alllo 0.38 0.4" 0.22 0.26 0.17 0.32 (0.22) 

uz1u; 0.21 0.21* 0.13 0.085 0.08 0.072 (0.038) 
- 

TABLE 3. (a) Asterisks indicate that the various constants have been selected to produce 
the 'theoretical' value. ( b )  The bracketed values for the boundary layer have been calcu- 
lated using the observed value of /3, i.e. not using the energy equation (8.5B). (c) It is 
assumed that kqo = 0.6 key, and that go. = 0.8 

for boundary layers. Changing the definition of entrainment constant for a 
boundary layer to 

(8.11) 

the equations become identical. Figure 7 shows the predicted variation of 
( k , ~ , ) - l  with p, assuming that 

V(k,)  = U(7,- 2k,1) (8.12) 

and that A = 0.359, chosen to agree with the wake values, (koqo)-l = 0.3, 
P = 0.40. The dominant wave-number of the wave groups is expected to be 
rather less than k,, and, since surface slopes of order one are the prelude to en- 
gulfment and the end of an entrainment cycle, the average depth of the in- 
dentations is about ki ' .  

Observed and predicted values of p ,  Ey0 (z, the dominant wave-number of a 
group, is assumed to be 0.6k0), p / U $  and O/T, are listed in table 3 for the three 
flows. Reasonable agreement is found between the values for wakes and jets 
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but the boundary-layer predictions are less good. In  view of the substantial 
differences in the environment of the turbulent flow, notably the presence of 
the wall instead of a plane of symmetry, no better agreement could be expected. 

9. Influence of flow density on entrainment rate 
By supposing that the growth of indentations of the bounding surface is 

controlled by an instability mechanism dependent on elastic behaviour of the 
turbulent fluid, most of the observed features of the large eddies can be explained, 
but the considerations of the previous section show that the bulk properties of 

(hl T O Y  

FIGURE 7. Dependence of critical wave-number on entrainment constant 
for jets and wakes. 

the flow do not depend critically on the exact mechanism of the entrainment. 
The arguments used there assume geometrical similarity of the turbulent motion 
in the different flows, which is possible if the energy released directly by the 
individual engulfments is nearly in proportion to that released by working of the 
velocity gradient against the Reynolds stresses in the interior of the turbulent 
fluid. If the density of the turbulent fluid differs greatly from that of the ambient 
Auid, conditions in the entrainment layer, say within a distance cr of the mean 
position of the bounding surface, are probably very different from those in the 
interior. Then the actual mechanism of the entrainment becomes important and 
it might be possible to distinguish between different mechanisms by measuring 
the variation of entrainment constant with density ratio. 

Consider a circular jet of one fluid entering and mixing with another of dif- 
ferent density, and assume that the distributions of mean velocity and density 
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difference are similar in form at all sections of the jet. Then the fluxes of momen- 
tum and of density defect 

M = 2 ~ / ~ ~ p U ~ r d r  and Q = 271 (p,-p) Urdr 
/Om 

are independent of distance from the jet orifice, and provide two relations be- 
tween the effective radius of the flow qo, the maximum velocity U,, and the maxi- 
mum density difference pa - pm. If the density defect is small, the development 
of the jet can be calculated, since the rate of increase of flow radius is determined 
by the velocity and length scales and by the properties of the fluid. Since viscosity 
has no direct influence on fully turbulent flow, the entrainment constant is a 
function of the local density ratio, p,/p,, which is nearly one a t  all distances from 
the flow origin for small density differences. 

The equilibrium hypothesis supposes that the bounding surface develops 
indentations that grow and engulf ambient fluid, and that are controlled by a 
mechanism keeping them near a condition of critical stability. For elastic be- 
haviour of the turbulent fluid and appreciable density difference, (6.2) can be 
modified to give the phase velocity of a surface wave as c - V ,  where c satisfies 

p,(c - V ) 2  = p(nz/c2) [4( 1 -c2/n)* - (2 - ~ ~ / n ) ~ ] ,  (9.1) 

where V is the effective velocity of the turbulent fluid and p is the effective 
density. Both V and p should be evaluated at a depth of order k-l within the 
turbulent fluid. For marginal stability, the equation has equal roots and it is not 
difficult to show that the critical value of V - c, the phase velocity relative to the 
ambient fluid, is nearly V p / ( p ,  + p )  for any density ratio. The spreading of the flow 
depends on the growth of indentations to a large amplitude during the unstable 
phase of a growth-decay cycle and we require the growth rate when the rigidity 
is rather less than the critical value. The instability is of the Helmholtz type so 
that the logarithmic growth rate is about kV(pup)4 / (pa+p)  (Lamb 1932), the 
indentations travelling with velocity V p / ( p ,  + p )  in agreement with the phase 
velocity of the critically stable waves. Then the logarithm of the amplification 
ratio is 

where 7 is the time available for growth, perhaps about half the time necessary 
for a complete growth-decay cycle. In  the time for a complete cycle, the wave 
crests extend out a distance of order k-l and the wave group travels a distance of 
order Vrp/(p, + p ) .  It follows that the rate of increase of flow width is propor- 
tional to the ratio of k-l to the distance travelled by the wave group, i.e. 

dqoldx = ( P u / i m 9  (9.3) 

since a is not expected to vary much from one flow to another. p1 is the entrain- 
ment constant for no density difference. 

If the controlling influence is eddy viscosity, the condition that a disturbance 
of amplitude uo, of wave-number k and travelling with phase velocity c -  V ,  
should have its growth rate considerably retarded by the viscosity, is of the form 

(9.4) kuo[pu(c - V)2+ pc2-J 3 pvTk2uoc, 
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equating unbalanced pressures at the interface caused by accelerations to Rey- 
nolds stresses in the turbulent fluid. The phase velocity relative to the ambient 
fluid must be near Vp,/(p,+p) ,  and so the (kinematic) eddy viscosity required 
is 

(9.5) 

An eddy viscosity of this magnitude for waves with not too large koqo is obtained 
if 

(?)if M v. (9.6) 

5 I- X 

I I I I I I I 

0 1 2 3 4 5 6 7 
X l d  

FIUURE 9. Variation of jet width with distance from orifice for a high-speed jet 
of air entering water. , lo; 0, 31:; x , +l;. 

The initial disturbance is derived from the main turbulent motion and has an 
initial velocity of order (?)a. The control process prevents excessive growth, and 
so the indentations must advance into the ambient fluid with a velocity of order 
(q2)if. Since the phase velocity of the growing indentations is V p / ( p , + p ) ,  the 

(9.7) 

rate of spread is 

- 

} d ~ o / d x =  V K V / ( P ~ +  P)I = (pa+ i?/P, 
i.e. dqddx = Pika + P)/'Y* 

The variations of entrainment constant with density ratio derived from the 
two hypotheses of elastic and viscous control are very similar if the densities 
are within a factor of two, but the elastic hypothesis predicts much smaller 
rates of spread for very large and very small density ratios. Unfortunately, 
pairs of miscible fluids of widely different densities are rare and the use of im- 
miscible fluids introduces the complications of surface tension. Supposing that 
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jets of sufficiently high speed contain locally homogeneous suspensions of one 
phase in the other, liquid-gas combinations are suitable for a test of the predic- 
tions (figure 8, plates 2 and 3). High-speed jets of water in air have quite small 
angles of spread even when the jet exit is roughened to accelerate the disintegra- 
tion of the jet (figure 8 (d))  and this behaviour is consistent only with the elastic 
model. It is possible, however, that the central visible jet is surrounded by 
a much thicker air-flow resembling an axisymmetric boundary layer, and the 
effective velocity of the ambient fluid may be quite large instead of being 
negligible. The reverse configuration of an air jet issuing into water is not subject 
to this particular objection but it is doubtful how large an effective density ratio 
is possible. Figure 8(a) (plate 2) shows a photograph of such a jet. Use of the 
conservation equations and the two entrainment equations (9.3) and (9.7) 
show that for large values of p,/p, yocc ( X - X , ) ~  for elastic control and that 
yo cc (x - zo)* for viscous control. The squares and cubes of the flow widths are 
plotted against axial distance in figure 9 and slightly better agreement is found 
with the elastic prediction, but the evidence is not decisive. 

10. Concluding remarks 
It has been shown that many of the observed features of the entrainment pro- 

cess can be explained if the large eddies are controlled by elastic behaviour of the 
turbulent fluid. The particular consequences of elastic behaviour arise from the 
stability of the shorter wavelengths of surface indentation, so that folding is 
confined to moderately large scales and the surface remains sharp to within the 
Kolmogoroff length scale. Further, the fast-growing indentations are limited to a 
narrow range of wave-numbers and the typical amplified disturbance is a group 
of about three waves. Reasonable numerical agreement with the observations is 
obtained with the simple flow model used here, but it might be useful to consider 
in more detail the stability problem with a continuous distribution of velocity 
within the turbulent fluid. Most existing knowledge of the characteristics of 
the bounding surface has been obtained indirectly and more direct and extensive 
studies of the surface would reduce the need for speculation in theories of en- 
trainment. The most valuable measurements would be of the space-time spectra 
of the surface displacement which would allow determination of the phase 
velocities of the indentations and of the dominant wavelengths. 

Appendix: waves on the interfaces between a layer of turbulent fluid 
and the surrounding inviscid stream 

Consider a layer of turbulent fluid initially bounded by the planes y = & h, 
and with zero mean velocity in the co-ordinate system. Surrounding it is an 
inviscid, irrotational stream moving with velocity V in the Ox-direction, and 
we wish to investigate the propagation and growth of waves of small amplitude. 
Since the component of stream velocity parallel to the wave fronts has no in- 
fluence on the motion, it is sufficient to consider only waves with fronts normal to 
the Ox-direction. Entrainment is neglected so there is a sharp distinction between 
turbulent and irrotational fluid. 
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If the surface displacement at the boundary is 

y(h) = y,(h) exp ik(x - ct), iA 1) 

where c may be complex, the theory of potential flow shows that the pressures 
at  the boundary are given by 

~ ( h )  = - k(c - V)’r(h). iA  2) 

The motion of the turbulent fluid must be able to satisfy the appropriate equa- 
tions of motion and to cause zero shear stress and normal stresses given by (A 2) 
at the boundaries. If the turbulent fluid behaves as a Newtonian fluid of kine- 
matic viscosity v, the equation of motion for small velocities is 

aupt = -gradp + vV2u. iA3) 

If it  behaves as an incompressible elastic jelly of kinematic rigidity n, the equa- 
tion of motion for small particle displacements 5 is 

a2EJat2 = - gradp + nV25. (A 4) 

In  both cases the turbulent fluid is incompressible and taking the divergence of 
the equations of motion leads to an equation for the pressure, 

whose solution is 
vzp = 0, (A5) 

(A 6) p = (pu sinh ky +ps cosh Icy) exp ik(x - ct ) .  

The two terms refer to antisymmetric and symmetric modes of boundary 
displacement. Except for the necessity of interchanging hyperbolic sines with 
hyperbolic cosines, the analysis is the same for each mode. 

First, consider the antisymmetric mode with viscous behaviour of the turbulent 
fluid. Introducing the stream function, 

$ = exp i k (x  - ct). 

such that u = a@/ay, v = - a$/ax, the equation of motion (A 3) becomes 

$g - k2[1 - ( ic /~k) ]  $0 = (ipu/v) cash ky, (A 7) 

after a little rearrangement. The boundary conditions are that the shear stress, 
v[(au/ay -t (av/ax)], is zero on both bounding surfaces, y = rt: h, and the appropi- 
ate solution is 

coslik’y , 1 @ -&[coshky---- 2 coshkh 
2 - ic/vk cosh k’h - kc 

where k’ = k[1- ic/(kv)]S. The other conditions are that normal stresses are 
continuous across the bounding surface and that the velocity field on each side 
should produce the same distortion. The normal stress inside the turbulent 
fluid is p - 2vav/ay and is equal to p(h) .  So 

(A91 
2ivk 4ivklc k‘ cosh kh sinh klh] 

p(h) = pa [ (1 + c-) sinh kh -T -____ 
2 - tc/Vk k cash k‘h 
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Since the rate of change of ~ ( h )  following the turbulent fluid is IJ = -ik$, 
$o(h) = cyo(h), (A2)  and (A9) lead to r2)' = ( 2  - V k  k)'tanhkh- 4 (1 -2)'tanh k'h, 

a relation between the complex phase velocity, the wave-number and the rela- 
tive velocity. For large values of kh, it reduces to 

For small values of kh, it  becomes 

(c - V)2 = - kh2,  (A 12) 

leading to c = V( 1 + i(kh)*), (A 13) 

c = $iV2/(vk), (A 14) 

(A15) c = * V ( l + i ) ,  

indicating a logarithmic growth rate of (kh)*kV. With large values of kh, 
(A 11) leads to 

if the Reynolds number c/(vk) is small, and to the well-known result for a vortex 
sheet, 

if the Reynolds number is large. 

are conveniently described by a function, 
For turbulent fluid which behaves as an incompressible jelly, the displacements 

9 = $o(Y) exp Wz - 4, 
such that the Ox- and Oy-components of the displacement are 6 = a#/ay and 
7 = - a$/ax. Substituting the antisymmetric pressure distribution in the equa- 
tion of motion (A4), we obtain 

9; - k2( 1 - c2/n) #o = i(pa/n) cosh ky, (A161 

and, after applying the boundary condition of zero shear stress a t  y = f h, 
the solution is found to be 

cosh [ky( 1 - c2/n)S . (A 17) 1 2 cosh kh 
cash Icy - __- 

2 - c2/n cosh [kh( 1 - c2/n)*] 

The normal stress inside the turbulent jelly is - p  + 2ni%,1/8y and so the pressure 
just outside the bounding surface is 

p(h)  = -po cosh kh 4n (' - c21n)* tanh [kh( 1 - c2/n)4] 
c2 2-c2/n 

Equating to the pressure in the inviscid fluid, we obtain a relation analogous to 
(A lo), 

-- ( c - V ) 2  - E[4(1 -c2/n)*tanh{kh(l-c2/n)4} -(2-cz/n)2tanhkh]. (A19) 
n C2 

For large values of kh, it becomes 

(c - V)2/n = (n/c2) [4( 1 - c2/n)4 - ( 2  - c2/n)2], (A 20) 
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and it is identical with the relation for viscous behaviour (A12) if Ich is small. 
Considered as a function of cln), the right-hand side of the equation has a maxi- 
mum value of 2 for c/ng = 0 and decreases steadily to - 1 as c/n& increases 
to 1. For larger values of c / d ,  it is complex. The left-hand side has a parabolic 
variation with the opposite curvature and, for c/n6 less than 0.63, there are two 
real roots.? The critical condition with identical real roots occurs for V = 1.79126 
and a phase velocity relative to the inviscid fluid of T' - c = 1.16ni. With smaller 
values of Ich, the variation of the right-hand side is similar but less in magnitude 
for antisymmetrical disturbances. If the disturbances are symmetrical, the tanh 
functions in (A 19) become coth functions and the magnitudes are greater if Ich 
is smaller. The result is that antisymmetrical disturbances become unstable at 
smaller values of the difference velocity than symmetrical disturbances of the 
same wave-number . 
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t (A20) can be rationalized into a sextic equation for c, and it might appear that 
there are two conjugate pairs of complex roots besides the two real ones. Because 
(A20) is derived from (A 19) as the limit for I (1 - ca/n)4 kh( + a, the only possible value 
of (1 -ca/n$ is one with a positive real part. For specific values of V ,  it can be shown 
that the complex roots satisfy the original equation only if (1 -c2/n)4 is chosen with a 
negative real part. A physical argument is that no source of energy exists if V = 0 
and that there are then only two real roots, corresponding to the two possible directions of 
propagation. If V is allowed to increase, the appearance of additional roots is to be ex- 
pected only if new kinds of motion become possible. 


